Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Renewable Energy ; 202:289-309, 2023.
Article in English | Scopus | ID: covidwho-2246292

ABSTRACT

Understanding the interactions among climate change, carbon emission allowance trading, crude oil and renewable energy stock markets, especially the role of climate change in this system is of great significance for policy makers, energy producers/consumers and relevant investors. The present paper aims to quantify the time-varying connectedness effects among the four factors by using the TVP-VAR based extensions of both time- and frequency-domain connectedness index measurements proposed by Antonakakis et al. (2020) and Ellington and Barunik (2021) [8,48]. The empirical results suggest that, firstly, the average total connectedness among climate change, carbon emission allowance trading, crude oil and renewable energy stock markets is not so strong for the heterogenous fundamentals underlying them. Nevertheless, the time-varying total connectedness fluctuates fiercely through May 2005 to September 2021, varying from about 8% to 30% and rocket to very high levels during the global subprime mortgage crisis and the COVID-19 pandemic. Furthermore, the total connectedness mainly centers on the short-term frequency, i.e., 1–3 months. Secondly, climate change is generally the leading information contributor among the four factors, although not particularly strong, and its leading role also performs mainly on the short-term frequency (1–3 months). Thirdly, renewable energy stock market and crude oil market show tight interactions between them and they are the two major bridges of information exchanges across various time frequencies (horizons) in this system. Finally, we confirm the evidence that the primary net connectedness contributor and receiver switch frequently across different time frequencies, implying that it is extremely essential for policy makers, energy producers/consumers and investors to make time-horizon-specific regulatory, production/purchasing or investment decisions when facing the uncertain effects of climate change on the interactions among carbon emission allowance, crude oil and renewable energy stock markets. © 2022 Elsevier Ltd

2.
Atmospheric Chemistry and Physics ; 23(2):877-894, 2023.
Article in English | ProQuest Central | ID: covidwho-2202606

ABSTRACT

The national and global restrictions in response to the COVID-19 pandemic led to a sudden, albeit temporary, emission reduction of many greenhouse gases (GHGs) and anthropogenic aerosols, whose near-term climate impact were previously found to be negligible when focusing on global- and/or annual-mean scales. Our study aims to investigate the monthly scale coupled climate-and-circulation response to regional, COVID-19-related aerosol emission reductions, using the output from 10 Earth system models participating in the Covid model intercomparison project (CovidMIP). We focus on January–February and March–May 2020, which represent the seasons of largest emission changes in sulfate (SO2) and black carbon (BC). During January–February (JF), a marked decrease in aerosol emissions over eastern China, the main emission region, resulted in a lower aerosol burden, leading to an increase in surface downwelling radiation and ensuing surface warming. Regional sea-level pressure and circulation adjustments drive a precipitation increase over the Maritime Continent, embedded in a negative Pacific Decadal Oscillation (PDO)- and/or El Niño–Southern Oscillation (ENSO)-like response over the Pacific, in turn associated with a northwestward displacement and zonal shrinking of the Indo-Pacific Walker cell. Remote climate anomalies across the Northern Hemisphere, including a weakening of the Siberian High and Aleutian Low, as well as anomalous temperature patterns in the northern mid-latitudes, arise primarily as a result of stationary Rossby wave trains generated over East Asia. The anomalous climate pattern and driving dynamical mechanism reverse polarity between JF and MAM (March–May) 2020, which is shown to be consistent with an underlying shift of the dominant region of SO2 emission reduction from eastern China in JF to India in MAM. Our findings highlight the prominent role of large-scale dynamical adjustments in generating a hemispheric-wide aerosol climate imprint even on short timescales, which are largely consistent with longer-term (decadal) trends. Furthermore, our analysis shows the sensitivity of the climate response to the geographical location of the aerosol emission region, even after relatively small, but abrupt, emission changes. Scientific advances in understanding the climate impact of regional aerosol perturbations, especially the rapidly evolving emissions over China and India, are critically needed to reduce current uncertainties in near-future climate projections and to develop scientifically informed hazard mitigation and adaptation policies.

3.
Energy ; 260:124949, 2022.
Article in English | ScienceDirect | ID: covidwho-1982976

ABSTRACT

Little attention has been paid to the effects of climate oscillations on the performance of renewable energy stock markets, although many studies have examined the instability of these markets caused by various external shocks. This paper aims to investigate the heterogenous impacts of El Niño-Southern Oscillation (ENSO) on renewable energy stock markets under different market conditions using a quantile framework. Our results show that, firstly, ENSO has significant shocks on the EU renewable energy stock market in most market conditions, whereas it has no significant influence on the US market. Secondly, there is an obvious asymmetry in the responses of the EU renewable energy stock markets under bullish and bearish markets to ENSO, respectively. Thirdly, strong La Niña events appear to have larger impacts than those of strong El Niño on the EU renewable energy stock markets. Finally, the good performance of the EU renewable energy stock markets can be deteriorated by strong La Niña events during the COVID-19 crisis. These findings can not only help us to understand the heterogenous shocks of ENSO on different renewable energy markets, but also provide deeper insights on efficient managements of extreme climate risks to renewable energy stock markets.

4.
Viruses ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: covidwho-1875810

ABSTRACT

Climate variability and anomalies are known drivers of the emergence and outbreaks of infectious diseases. In this study, we investigated the potential association between climate factors and anomalies, including El Niño Southern Oscillation (ENSO) and land surface temperature anomalies, as well as the emergence and spillover events of bat-borne viral diseases in humans and livestock in the Asia-Pacific region and the Arabian Peninsula. Our findings from time series analyses, logistic regression models, and structural equation modelling revealed that the spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were differently impacted by climate variability and with different time lags. We also used event coincidence analysis to show that the emergence events of most bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula were statistically associated with ENSO climate anomalies. Spillover patterns of the Nipah virus in Bangladesh and the Hendra virus in Australia were also significantly associated with these events, although the pattern and co-influence of other climate factors differed. Our results suggest that climate factors and anomalies may create opportunities for virus spillover from bats to livestock and humans. Ongoing climate change and the future intensification of El Niño events will therefore potentially increase the emergence and spillover of bat-borne viral diseases in the Asia-Pacific region and the Arabian Peninsula.


Subject(s)
Chiroptera , Hendra Virus , Nipah Virus , Virus Diseases , Animals , Asia/epidemiology , Humans , Virus Diseases/epidemiology , Virus Diseases/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL